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Introduction

Estimating dynamic panel data models that feature both fixed effects
and lagged dependent variables is a nontrivial problem:

Standard FE-OLS and First-Difference estimators are
inconsistent in N.
2SLS can be consistent in N but is inefficient.

Keane and Runkle (1992) proposed ‘forward-filtering’ to eliminate
serial correlation and increase efficiency.

Papers such as Arrelano and Bond (1991) and Blundell and Bond
(1998) argued that this was not fully efficient as it did not use all
available instruments.

The estimators proposed in those papers, which were Dynamic GMM
and System GMM respectively, relies on all available lags as
instruments to further improve efficiency.
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Introduction

The GMM estimators can suffer from the “many-instruments
problem”, which bias the coefficients towards OLS.

Baltagi (2005) states that:

“Ziliak (1997) performs an extensive set of Monte Carlo experiments
for a dynamic panel-data model... [and] finds that the downward bias
of generalized method of moments (GMM) is quite severe as the
number of moment conditions expands, outweighing the gains in
efficiency. Interestingly, Ziliak finds that the forward filter two-stage
least-squares (2SLS) estimator proposed by Keane and Runkle (1992)
performs best in terms of the bias/efficiency tradeoff and is
recommended.”
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Introduction

In this presentation we will:

present a user-written Stata command called XTKR that
implements the Keane and Runkle (1992) approach,
apply the estimator to an empirical application, and
present new Monte Carlo evidence that shows that this approach
can perform better than the popular alternatives.

In the Monte Carlo simulations we also consider methods proposed by
Windmeijer (2005) and Roodman (2009) to compress the instrument
set in the Arellano-Bond and Blundell-Bond approaches.
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Dynamic Panel Data Models

Consider the dynamic panel data model:

yit = β0 + β1yit−1 + β2xit + µi + εit (1)

OLS is biased and inconsistent because yit−1 is correlated with µi by
construction.

Applying the ‘within’ transformation (i.e. the Fixed Effects estimator)
yields:

(yit − ȳi ) = β1(yit−1 − ȳi ) + β2(xit − x̄i ) + (εit − ε̄i ) (2)

But this is also biased because yit−1 and ȳi are correlated with ε̄i by
construction. This bias decreases as T increases, and is called the
Nickell bias after Nickell (1981).
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Dynamic Panel Data Models

Another popular alternative is the First-Difference estimator:

(yit − yit−1) = β1(yit−1 − yit−2) + β2(xit − xit−1) + (εit − εit−1) (3)

This is inconsistent because: (i) yit−1 is correlated with εit−1 and also
(ii) xit is correlated with εit−1 (assuming xit is only weakly exogenous
or predetermined).

2SLS applied to (1) or (3) can provide consistent estimates if
appropriate instruments are used:

To estimate (1) using 2SLS, we can use ∆yit−1 and ∆xit−1 as
instruments as they will be uncorrelated with εit and µit .
To estimate (3), we can use instruments that are uncorrelated
with εit−1, such as yit−2 and xit−2.

While 2SLS will be consistent, the presence of serially correlated
errors will lead to inefficient estimates.
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Dynamic Panel Data Models

The Keane and Runkle (1992) approach uses the idea of forward
filtering from the time-series literature to increase efficiency.

It involves obtaining a consistent estimate of Σ̂ = 1
N

∑N
i=1 Û

i Û i ′ ,

where Û i is the residual vector for individual i from 2SLS estimation.

Then it calculates Q̂ = (IN ⊗ P̂) where P̂ is the upper-triangular
Cholesky decomposition of Σ̂−1.

Finally, it transforms (1) or (3) by premultiplying the equation with Q̂
and runs 2SLS on the transformed equation using the original
instrument set. This will yield the following slope coefficients:

β̂KR = (X ′Q̂
′
Z (Z ′Z )−1Z ′Q̂X )−1X ′Q̂

′
Z (Z ′Z )−1Q̂Y . (4)

Key Point: Pre-multiplication of (3) by Q̂ makes the transformed
residual for time t a function of epsilons dated t − 1, t, t + 1, ...,T , so
the original instruments, such as yit−2 and xit−2, remain valid.
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The XTKR Command

XTKR implements the Keane and Runkle (1992) approach to panel
data models.

Syntax:

xtkr depvar [varlist1 ] (varlist2 = varlist3) [if ] [in] [, nocons tdum]

varlist1 refers to any exogenous variables, varlist2 refers to the
endogenous variables, and varlist3 refers to the excluded instruments.

The option ‘tdum’ demeans the data across the time dimension prior
to estimation. This is equivalent and preferable to adding time
dummies to the regression as that can cause collinearity in the second
stage of the estimator.

It can be installed through ssc by simply typing ‘ssc install xtkr’.
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Empirical Example

We will now replicate an empirical example in Baltagi (2005) that
shows the results of these estimators to the dynamic demand for
cigarettes in the US from 1963 to 1992.

The specified equation is:

lnCit = α+β1ln(Ci ,t−1) +β2ln(Pit) +β3ln(Pnit) +β4ln(Yit) +uit (5)

where i is a US state, N = 46, and T = 30. We assume the three
regressors are predetermined and that their lagged values are used to
instrument for the lag of consumption.
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Empirical Example

Estimator lnCit−1 lnPit lnPnit lnYit Instruments

OLS 0.954 -0.137 0.037 -0.009 N/A
(148.5) (-8.67) (2.72) (-1.13)

SYS-GMM 0.942 -0.172 0.047 0.002 466
(123.85) (-9.51) (3.19) (0.29)

DIFF-GMM 0.843 -0.377 -0.016 0.139 437
(52.66) (-11.81) (-0.39) (3.88)

2SLS-DIFF 0.645 -0.406 0.038 0.156 6
(4.24) (-11.77) (0.86) (2.84)

KR-DIFF 0.703 -0.338 0.075 0.225 6
(17.52) (-13.51) (2.59) (6.44)

Note: t-statistics are in parenthesis. All regressions include time fixed effects.
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Monte Carlo Simulations

In this part we will test the Keane and Runkle (1992) approach
against DIFF-GMM and SYS-GMM using Monte Carlo simulations.

We will also consider two proposals to avoid the many-instruments
problem in the GMM estimators:

restricting the number of lags in the instrument set, and
collapsing the instrument matrix.

The data-generating process is:

yit = β0 + β1yit−1 + β2xit + µi + εit (6)

where the regressor follows the process:

xit = ηi + 0.5µi + 0.5εit + 0.5εit−1 + ωit (7)

µi , ηi , εit , and ωit are generated IID.

β1 = 0.5 and β2 = 1.
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Monte Carlo Simulations

(N=100,T) Bias (x100) RMSE (x100)

Instr. Set Instr. Count 5 10 20 5 10 20

Results for β1 = 0.5

FE-OLS N/A -19.33 -10.71 -7.39 19.56 10.82 7.45

KR-DIFF
3 lags 4 -3.09 -0.53 -0.20 15.22 5.15 2.80
4 lags 6 -9.11 -1.13 -0.34 23.56 5.18 2.70

DIFF-GMM
full 12/72/342 -6.78 -5.85 -5.46 10.65 6.54 5.63
full (collapse) 6/16/36 -6.81 -3.27 -1.86 12.99 5.20 2.73
2 lags 10/30/70 -5.94 -4.03 -3.40 10.46 5.59 4.07
2 lags (collapse) 4 -5.08 -0.71 -0.13 15.83 6.37 3.17

SYS-GMM
full 19/89/379 0.21 2.53 4.66 6.44 4.23 5.21
full (collapse) 9/19/39 -5.63 -2.82 -1.67 11.10 4.86 2.61
2 lags 17/47/107 0.20 1.25 1.66 6.65 3.78 2.86
2 lags (collapse) 7 -4.40 -0.58 -0.08 11.88 5.49 3.13
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Monte Carlo Simulations

(N=100,T) Bias (x100) RMSE (x100)

Instr. Set Instr. Count 5 10 20 5 10 20

Results for β2 = 1

FE-OLS N/A 25.03 32.61 34.60 25.43 32.73 34.65

KR-DIFF
3 lags 4 1.53 0.99 0.39 23.40 11.92 7.87
4 lags 6 4.75 2.68 0.86 31.66 12.12 7.66

DIFF-GMM
full 12/72/342 11.95 18.79 24.99 20.72 20.05 25.24
full (collapse) 6/16/36 20.74 15.15 10.93 40.03 21.07 13.39
2 lags 10/30/70 10.79 12.37 12.54 21.36 15.58 13.91
2 lags (collapse) 4 18.08 3.20 0.71 56.80 24.90 11.05

SYS-GMM
full 19/89/379 11.97 16.01 18.65 20.36 18.12 19.49
full (collapse) 9/19/39 14.74 9.74 7.37 28.95 14.95 9.82
2 lags 17/47/107 10.82 11.74 11.59 20.27 15.11 13.16
2 lags (collapse) 7 11.35 2.36 0.69 31.76 15.39 8.96
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Conclusion

The KR approach has two key features relative to other popular
panel-data estimators:

It relies on a small instrument set (typically one or two lags of
the predetermined variables).
It relies on forward filtering to eliminate serial correlation.

We show in an application in Cigarette demand that the KR estimator
generated coefficients that are arguably more theoretically plausible
than alternative methods.

We also report some MC simulation results that show that the KR
approach can potentially perform better than the alternatives,
consistent with the findings of Ziliak (1997).

Now that the estimator is available in Stata through XTKR and has
simple syntax, we believe it should be in the toolkit of applied
researchers.
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